Allopregnanolone and pregnanolone-neurosteroids synthesized from progesterone in the brain, adrenal gland, ovary and testis-have been implicated in a range of neuropsychiatric conditions including seizure disorders, post-traumatic stress disorder, major depression, post-partum depression, pre-menstrual dysphoric disorder, chronic pain, Parkinson's disease, Alzheimer's disease, neurotrauma, and stroke. Allopregnanolone and pregnanolone equipotently facilitate the effects of gamma-amino-butyric acid (GABA) at GABA A receptors, and when sulfated, antagonize N-methyl-D-aspartate receptors. They play myriad roles in neurophysiological homeostasis and adaptation to stress while exerting anxiolytic, antidepressant, anti-nociceptive, anticonvulsant, anti-inflammatory, sleep promoting, memory stabilizing, neuroprotective, pro-myelinating, and neurogenic effects. Given that these neurosteroids are synthesized de novo on demand, this review details the molecular steps involved in the biochemical conversion of cholesterol to allopregnanolone and pregnanolone within steroidogenic cells. Although much is known about the early steps in neurosteroidogenesis, less is known about transcriptional, translational, and post-translational processes in allopregnanolone-and pregnanolone-specific synthesis. Further research to elucidate these mechanisms as well as to optimize the timing and dose of interventions aimed at altering the synthesis or levels of these neurosteroids is much needed. This should include the development of novel therapeutics for the many neuropsychiatric conditions to which dysregulation of these neurosteroids contributes.