To evaluate effects of stocking density on welfare of Amur sturgeon (Acipenser schrenckii), an experiment was designed using three initial stocking densities in flow-through tanks (LSD = 3.7 kg m À3 , MSD = 6.9 kg m À3 , and HSD = 9.3 kg m À3 , respectively) for 60 days. Growth, body composition, and haematological and biochemical parameters were monitored. The mortality and feed conversion rate (FCR) were not affected by stocking density. However, the specific growth rate (SGR), final weight and weight gain in the HSD group were significantly lower than in the LSD and MSD groups. The hepatosomatic (HSI) and viscerosomatic indices (VSI) varied inversely with regard to stocking density. Stocking density did not affect crude protein levels in fish. In contrast, the total lipid level was significantly higher in the LSD group compared to the MSD and HSD groups. The levels of erythrocytes and haemoglobin were positively correlated with stocking density. Serum total bilirubin and urea in HSD group were significantly higher than in the LSD group while serum triglycerides showed opposite tendencies. Differences between treatments were not registered for glucose, total protein and albumin. In conclusion, higher stocking density resulted in increased immunosuppression and enhanced energy mobilization. The latter was necessary to enable Amur sturgeon to cope with crowding.
Supernumerary teats represent a common abnormality of the bovine udder. A genome-wide association study was performed based on the proportion of the occurrence of supernumerary teats in the daughters of 1097 Holstein bulls. The heritability of caudal supernumerary teats without mammary gland in this study was 0.604. The largest proportion of the heritability was attributable to BTA 20. The strongest evidence for association was with five SNPs on chromosome 20, referred to as a QTL. The mode of inheritance at this QTL was dominant. These findings reveal that the occurrence of caudal supernumerary teats without mammary gland in Holstein cattle is influenced by a QTL on chromosome 20 and a polygenic part. The data support the high potential of the SNPs in the QTL region as markers for breeding against caudal supernumerary teats.
In this study, the cDNA sequences of HSP70 and HSP90 were isolated from the special chondr-ganoid scale, Amur sturgeon, for the first time. Homology analysis indicated that amino acid sequences of HSP70 and HSP90 shared high identity with other species (82.68-99.07 and 90.19-98.07%, respectively). The tissue expression analysis showed that the asHSP70 and asHSP90 mRNA were ubiquitously expressed in all the examined tissues under unstressed condition. The expression pattern of HSP70 and HSP90 under chronic (crowding) and acute (hypoxia) stress was examined by q-PCR in liver, spleen and kidney. Results showed that stocking density could significantly influence the expression of HSP70 at day 20 and/or day 40. In contrast to stocking density, levels of HSP70 transcripts indicated a remarkable increase in all examined tissues after hypoxia stress. HSP90 levels in liver and spleen increased significantly in high stocking density. By comparison, significant increase of asHSP90 in kidney was only found in high stocking density at day 40. Similar to HSP70, the levels of HSP90 transcripts showed significant increases after hypoxia stress except the transcript of liver in H2 group 6 h after hypoxia. The assessment of asHSP70 and asHSP90 mRNA levels under crowding and hypoxia stresses indicated that asHSP70 and asHSP90 gene might be good indicators of stressful situations for Amur sturgeon. Taking serum globulin and electrolytes account, we suggest that crowding and hypoxia stress can result in considerable stress for Amur sturgeon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.