Japanese encephalitis virus (JEV) is a positive-sense single-stranded RNA virus of the Flavivirus genus that is spread by Culex mosquitos. It is maintained in an enzootic cycle in pigs and wild birds in which humans are dead-end hosts [1]. Despite having effective vaccines, JEV is the leading cause of viral encephalitis in Asia [1]. As a neuroinvasive virus, it can effectively cross the blood-brain barrier (BBB) to cause acute encephalitis. Twenty-five percent to 30% of Japanese encephalitis (JE) cases are fatal, and 50% result in permanent neuropsychiatric complications [2]. There are currently no treatments for JE, partly due to an incomplete understanding of the mechanisms promoting encephalitis. The central nervous system (CNS) relies on the BBB, a tightly regulated barrier between the peripheral circulation and the CNS, to prevent entry of pathogens, including viruses. Yet, JEV and other neuroinvasive viruses can overcome the BBB, which usually excludes foreign substances. It is formed primarily by tight junctions (TJ) between endothelial cells, comprised of proteins such as claudin-5, zonula occludens (ZO)-1, and occludin. The BBB is sustained by supporting cell types, including astrocytes, pericytes, microglia, and mast cells (MCs) [1, 3]. Together, these cells form neurovascular units that maintain a barrier along the cerebrovascular microvessels to promote immune privilege and CNS homeostasis [3, 4]. Neuroinvasive viruses use several mechanisms to access the CNS: (1) direct infection of endothelial cells and subsequent transcellular release of virus into the brain parenchyma, (2) infection of peripheral immune cells that enter the CNS in a "Trojan Horse" mechanism, (3) paracellular entry following breakdown of the BBB, (4) retrograde transport of virus from the peripheral nervous system (PNS) into the CNS, and (5) translocation from the blood to the cerebral spinal fluid (CSF) [5, 6] (Fig 1). JEV infection through the natural subcutaneous route leads to widespread infection in various parts of the brain [7], suggesting a hematological route of infection, such as would occur for mechanisms 1-3. Here we provide an overview of a few described mechanisms of JEV penetration of the BBB and processes that amplify CNS infection. Transcellular infection of endothelial cells and activation of the neurovascular unit Some neurotropic viruses directly infect endothelial cells to reach the brain from the circulation and travel transcellularly to release viruses into the brain parenchyma [6]. JEV has been