We report here the resonance Raman spectra of the FeIII-NO and FeII-NO complexes of the bacterial NOSs (nitric oxide synthases) from Staphylococcus aureus and Bacillus subtilis. The haem-NO complexes of these bacterial NOSs displayed Fe-N-O frequencies similar to those of the mammalian NOSs, in presence and absence of L-arginine, indicating that haem-bound NO and L-arginine had similar haem environments in bacterial and mammalian NOSs. The only notable difference between the two types of NOS was the lack of change in Fe-N-O frequencies of the FeIII-NO complexes upon (6R) 5,6,7,8-tetrahydro-L-biopterin binding to bacterial NOSs. We report, for the first time, the characterization of NO complexes with NOHA (N ω -hydroxy-Larginine), the substrate used in the second half of the catalytic cycle of NOSs. In the FeIII-NO complexes, both L-arginine and NOHA induced the Fe-N-O bending mode at nearly the same frequency as a result of a steric interaction between the substrates and the haem-bound NO. However, in the FeII-NO complexes, the Fe-N-O bending mode was not observed and the ν Fe−NO mode displayed a 5 cm −1 higher frequency in the complex with NOHA than in the complex with L-arginine as a result of direct interactions that probably involve hydrogen bonds. The different behaviour of the substrates in the FeII-NO complexes thus reveal that the interactions between haem-bound NO and the substrates are finely tuned by the geometry of the Fe-ligand structure and are relevant to the use of the FeII-NO complex as a model of the oxygenated complex of NOSs.