The endogenous cardiac steroid-like compounds, endogenous ouabain (EO) in particular, are present in the human circulation and are considered putative ligands of the inhibitory binding site of the plasma membrane Na(+)-K(+)-ATPase. A vast amount of data shows that, when added to cell cultures, these steroids promote the growth of cardiac, vascular, and epithelial cells. However, the involvement of the endogenous compounds in the regulation of cell viability and proliferation has never been addressed experimentally. In this study, we show that EO is present in mammalian sera and cerebral spinal fluid, as well as in commercial bovine and horse sera. The lowering of serum EO concentration by the addition of specific anti-ouabain antibodies caused a decrease in the viability of several cultured cell lines. Among these, neuronal NT2 cells were mostly affected, whereas no reduction in viability was seen in rat neuroendocrine PC12 and monkey kidney COS-7 cells. The anti-ouabain antibody-induced reduction in NT2 cell viability was significantly attenuated by the addition of ouabain and was not observed in cells growing in serum-free media. Furthermore, the addition to the medium of low concentrations (nM) of the cardenolide ouabain, but not of the bufadienolide bufalin, increased NT2 and PC12 cell viability and proliferation. In addition, at these concentrations both ouabain and bufalin caused the activation of ERK1/2 in the NT2 cells. The specific ERK1/2 inhibitor U0126 inhibited both the ouabain-induced activation of the enzyme and the increase in cell viability. Furthermore, anti-ouabain antibodies attenuated serum-stimulated ERK1/2 activity in NT2 but not in PC12 cells. Cumulatively, our results suggest that EO plays a significant role in the regulation of cell viability. In addition, our findings support the notion that activation of the ERK1/2 signaling pathway is obligatory but not sufficient for the induction of cell viability by EO.