The intrahost evolution of hepatitis C virus (HCV) holds keys to understanding mechanisms responsible for the establishment of chronic infections and to development of a vaccine and therapeutics. In this study, intrahost variants of two variable HCV genomic regions, HVR1 and NS5A, were sequenced from four treatment-naïve chronically infected patients who were followed up from the acute stage of infection for 9 to 18 years. Median-joining network analysis indicated that the majority of the HCV intrahost variants were observed only at certain time points, but some variants were detectable at more than one time point. In all patients, these variants were found organized into communities or subpopulations. We hypothesize that HCV intrahost evolution is defined by two processes: incremental changes within communities through random mutation and alternations between coexisting communities. The HCV population was observed to incrementally evolve within a single community during approximately the first 3 years of infection, followed by dispersion into several subpopulations. Two patients demonstrated this pattern of dispersion for the rest of the observation period, while HCV variants in the other two patients converged into another single subpopulation after ϳ9 to 12 years of dispersion. The final subpopulation in these two patients was under purifying selection. Intrahost HCV evolution in all four patients was characterized by a consistent increase in negative selection over time, suggesting the increasing HCV adaptation to the host late in infection. The data suggest specific staging of HCV intrahost evolution.Hepatitis C virus (HCV) infection is a major cause of liver disease in the world. It is estimated that ϳ130 million people are infected with HCV globally (2). HCV is a heterogeneous single-stranded (plus-strand) RNA virus belonging to the Flaviviridae. The HCV genome contains one large open reading frame that encodes a polyprotein which can be processed into 10 mature proteins (34). HCV causes chronic infection in 70 to 85% of infected adults. There is no vaccine against HCV, and current antiviral therapy is effective in only 50 to 70% of chronically infected patients (18).HCV intrahost evolution is frequently compared to an "arms race," implying that the HCV genome constantly changes in order to escape from neutralizing adaptive immunoresponses (53). This concept of constant change is seemingly different from the HIV model, according to which intrahost evolution slows down with CD4 ϩ T-cell depletion and quasispecies diversity decreases with the development of AIDS (48). Our limited understanding of the dynamics of HCV intrahost evolution impedes the development of efficient therapeutic and prophylactic interventions.Analysis of HCV longitudinal evolution is significantly hindered by difficulties with identifying and with long-term follow-up of patients, starting from the acquisition of infection. In the present study, we explored HCV evolutionary processes during long-term chronic infection in four treatment-...