The intrahost evolution of hepatitis C virus (HCV) holds keys to understanding mechanisms responsible for the establishment of chronic infections and to development of a vaccine and therapeutics. In this study, intrahost variants of two variable HCV genomic regions, HVR1 and NS5A, were sequenced from four treatment-naïve chronically infected patients who were followed up from the acute stage of infection for 9 to 18 years. Median-joining network analysis indicated that the majority of the HCV intrahost variants were observed only at certain time points, but some variants were detectable at more than one time point. In all patients, these variants were found organized into communities or subpopulations. We hypothesize that HCV intrahost evolution is defined by two processes: incremental changes within communities through random mutation and alternations between coexisting communities. The HCV population was observed to incrementally evolve within a single community during approximately the first 3 years of infection, followed by dispersion into several subpopulations. Two patients demonstrated this pattern of dispersion for the rest of the observation period, while HCV variants in the other two patients converged into another single subpopulation after ϳ9 to 12 years of dispersion. The final subpopulation in these two patients was under purifying selection. Intrahost HCV evolution in all four patients was characterized by a consistent increase in negative selection over time, suggesting the increasing HCV adaptation to the host late in infection. The data suggest specific staging of HCV intrahost evolution.Hepatitis C virus (HCV) infection is a major cause of liver disease in the world. It is estimated that ϳ130 million people are infected with HCV globally (2). HCV is a heterogeneous single-stranded (plus-strand) RNA virus belonging to the Flaviviridae. The HCV genome contains one large open reading frame that encodes a polyprotein which can be processed into 10 mature proteins (34). HCV causes chronic infection in 70 to 85% of infected adults. There is no vaccine against HCV, and current antiviral therapy is effective in only 50 to 70% of chronically infected patients (18).HCV intrahost evolution is frequently compared to an "arms race," implying that the HCV genome constantly changes in order to escape from neutralizing adaptive immunoresponses (53). This concept of constant change is seemingly different from the HIV model, according to which intrahost evolution slows down with CD4 ϩ T-cell depletion and quasispecies diversity decreases with the development of AIDS (48). Our limited understanding of the dynamics of HCV intrahost evolution impedes the development of efficient therapeutic and prophylactic interventions.Analysis of HCV longitudinal evolution is significantly hindered by difficulties with identifying and with long-term follow-up of patients, starting from the acquisition of infection. In the present study, we explored HCV evolutionary processes during long-term chronic infection in four treatment-...
Hepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis C virus (HCV) infections are associated with unsafe injection practices, drug diversion, and other exposures to blood, being difficult to detect and investigate. Here, we developed and validated a simple approach for molecular detection of HCV transmissions in outbreak settings. We obtained sequences from the HCV hypervariable region 1 (HVR1) using End-Point Limiting-Dilution (EPLD) from 127 cases involved in 32 epidemiologically defined HCV outbreaks and 193 individuals with unrelated HCV strains. We compared several types of genetic distances and calculated a threshold using minimal Hamming distances that identifies transmission clusters in all tested outbreaks with 100% accuracy. The approach was also validated on sequences from 239 individuals obtained using next-generation sequencing, showing the same accuracy as EPLD. In average, nucleotide diversity of the intra-host population was 6.2-times greater in the source than in any incident case, allowing the correct detection of transmission direction in 8 outbreaks for which source cases were known. A simple and accurate distance-based approach for detecting HCV transmissions developed here streamlines molecular investigation of outbreaks, thus improving the public health capacity for rapid and effective control of hepatitis C.
BackgroundIn Nigeria, hepatitis B virus (HBV) infection has reached hyperendemic levels and its nature and origin have been described as a puzzle. In this study, we investigated the molecular epidemiology and epidemic history of HBV infection in two semi-isolated rural communities in North/Central Nigeria. It was expected that only a few, if any, HBV strains could have been introduced and effectively transmitted among these residents, reflecting limited contacts of these communities with the general population in the country.Methods and FindingsDespite remoteness and isolation, ∼11% of the entire population in these communities was HBV-DNA seropositive. Analyses of the S-gene sequences obtained from 55 HBV-seropositive individuals showed the circulation of 37 distinct HBV variants. These HBV isolates belong predominantly to genotype E (HBV/E) (n = 53, 96.4%), with only 2 classified as sub-genotype A3 (HBV/A3). Phylogenetic analysis showed extensive intermixing between HBV/E variants identified in these communities and different countries in Africa. Quasispecies analysis of 22 HBV/E strains using end-point limiting-dilution real-time PCR, sequencing and median joining networks showed extensive intra-host heterogeneity and inter-host variant sharing. To investigate events that resulted in such remarkable HBV/E diversity, HBV full-size genome sequences were obtained from 47 HBV/E infected persons and P gene was subjected to Bayesian coalescent analysis. The time to the most recent common ancestor (tMRCA) for these HBV/E variants was estimated to be year 1952 (95% highest posterior density (95% HPD): 1927–1970). Using additional HBV/E sequences from other African countries, the tMRCA was estimated to be year 1948 (95% HPD: 1924–1966), indicating that HBV/E in these remote communities has a similar time of origin with multiple HBV/E variants broadly circulating in West/Central Africa. Phylogenetic analysis and statistical neutrality tests suggested rapid HBV/E population expansion. Additionally, skyline plot analysis showed an increase in the size of the HBV/E-infected population over the last ∼30–40 years.ConclusionsOur data suggest a massive introduction and relatively recent HBV/E expansion in the human population in Africa. Collectively, these data show a significant shift in the HBV/E epidemic dynamics in Africa over the last century.
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.