Clinical microbiology and public health laboratories are beginning to utilize next-generation sequencing (NGS) for a range of applications. This technology has the potential to transform the field by providing approaches that will complement, or even replace, many conventional laboratory tests. While the benefits of NGS are significant, the complexities of these assays require an evolving set of standards to ensure testing quality. Regulatory and accreditation requirements, professional guidelines, and best practices that help ensure the quality of NGS-based tests are emerging. This review highlights currently available standards and guidelines for the implementation of NGS in the clinical and public health laboratory setting, and it includes considerations for NGS test validation, quality control procedures, proficiency testing, and reference materials. N ext-generation sequencing (NGS) is transforming the landscape of clinical microbiology and public health laboratories. The applications of NGS are wide-ranging and include wholegenome sequencing, microbiome analysis/metagenomics, transcriptome profiling, infectious disease diagnosis, pathogen discovery, and public health surveillance. For example, NGS has recently been used to better understand hospital outbreaks and inform infection control practices (1), and it can be used in the clinical microbiology laboratory to identify unknown organisms, predict antimicrobial resistance, assess virulence gene content, and inform molecular epidemiology efforts (2). Metagenomic "unbiased" NGS applications, coupled with recently developed bioinformatics solutions (3-5) that enable the identification of all pathogens directly from a clinical sample based on sequence homology, have the potential to complement or even replace current standard clinical laboratory tests. For example, the use of metagenomics combined with a rapid bioinformatics pipeline recently facilitated a clinically actionable diagnosis of neuroleptospirosis when conventional testing was initially unable to identify the causative organism (6). A number of agencies are working to bring NGS into the public health laboratory setting. For example, through the U.S. Centers for Disease Control and Prevention (CDC) Advanced Molecular Detection (AMD) Initiative, national, state, and local partners are beginning to incorporate NGSbased methods into disease surveillance systems. AMD initiatives include broad applications of NGS to address public health problems, including vaccine improvement, identification of emerging threats, and tracking diseases and outbreaks (http://www.cdc.gov /amd/). The CDC, Food and Drug Administration (FDA), National Institutes of Health (NIH), National Center for Biotechnology Information (NCBI), National Library of Medicine, and the U.S. Department of Agriculture/Food Safety and Inspection Service (USDA/FSIS) have established an Interagency Collaboration on Genomics and Food Safety (Gen-FS), with the goal of fostering timely access to genomic data for foodborne pathogen surveillance and ou...
Penicillin (PEN) is a low-cost option for anthrax treatment, but naturally occurring resistance has been reported. β-Lactamase expression (bla1,bla2) inBacillus anthracisis regulated by a sigma factor (SigP) and its cognate anti-sigma factor (RsiP). Mutations leading to truncation of RsiP were previously described as a basis for PEN resistance. Here, we analyze whole-genome sequencing (WGS) data and compare the chromosomalsigP-bla1regions from 374B. anthracisstrains to determine the frequency of mutations, identify mutations associated with PEN resistance, and evaluate the usefulness of WGS for predicting PEN resistance. Few (3.5%) strains contained at least 1 of 11 different mutations insigP,rsiP, orbla1.Nine of these mutations have not been previously associated with PEN resistance. Four strains showed PEN resistance (PEN-R) by conventional broth microdilution, including 1 strain with a novel frameshift inrsiP. One strain that carries the samersiPframeshift mutation as that found previously in a PEN-R strain showed a PEN-susceptible (PEN-S) phenotype and exhibited decreasedbla1andbla2transcription. An unexpectedly small colony size, a reduced growth rate, and undetectable β-lactamase activity levels (culture supernatant and cell lysate) were observed in this PEN-S strain. Sequence analysis revealed mutations in genes associated with growth defects that may contribute to this phenotype. WhileB. anthracisrsiPmutations cannot be exclusively used to predict resistance, four of the five strains withrsiPmutations were PEN-R. Therefore, theB. anthracissigP-bla1region is a useful locus for WGS-based PEN resistance prediction, but phenotypic testing remains essential.IMPORTANCEDetermination of antimicrobial susceptibility ofB. anthracisis essential for the appropriate distribution of antimicrobial agents for postexposure prophylaxis (PEP) and treatment of anthrax. Analysis of WGS data allows for the rapid detection of mutations in antimicrobial resistance (AMR) genes in an isolate, but the presence of a mutation in an AMR gene does not always accurately predict resistance. As mutations in the anti-sigma factor RsiP have been previously associated with high-level penicillin resistance in a limited number of strains, we investigated WGS assemblies from 374 strains to determine the frequency of mutations and performed functional antimicrobial susceptibility testing. Of the five strains that contained mutations inrsiP, only four were PEN-R by functional antimicrobial susceptibility testing. We conclude that while sequence analysis of this region is useful for AMR prediction inB. anthracis, genetic analysis should not be used exclusively and phenotypic susceptibility testing remains essential.
Widespread release of Bacillus anthracis (anthrax) or Yersinia pestis (plague) would prompt a public health emergency. During an exposure event, high-quality whole genome sequencing (WGS) can identify genetic engineering, including the introduction of antimicrobial resistance (AMR) genes. Here, we developed rapid WGS laboratory and bioinformatics workflows using a long-read nanopore sequencer (MinION) for Y. pestis (6.5 h) and B. anthracis (8.5 h) and sequenced strains with different AMR profiles. Both salt-precipitation and silica-membrane extracted DNA were suitable for MinION WGS using both rapid and field library preparation methods. In replicate experiments, nanopore quality metrics were defined for genome assembly and mutation analysis. AMR markers were correctly detected and >99% coverage of chromosomes and plasmids was achieved using 100,000 raw sequencing reads. While chromosomes and large and small plasmids were accurately assembled, including novel multimeric forms of the Y. pestis virulence plasmid, pPCP1, MinION reads were error-prone, particularly in homopolymer regions. MinION sequencing holds promise as a practical, front-line strategy for on-site pathogen characterization to speed the public health response during a biothreat emergency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.