Antigen-based tests for SARS-CoV-2, the virus that causes coronavirus disease 2019 , are inexpensive and can return results within 15 minutes (1). Antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in asymptomatic and symptomatic persons within the first 5-12 days after symptom onset (2). These tests have been used at U.S. colleges and universities and other congregate settings (e.g., nursing homes and correctional and detention facilities), where serial testing of asymptomatic persons might facilitate early case identification (3-5). However, test performance data from symptomatic and asymptomatic persons are limited. This investigation evaluated performance of the Sofia SARS Antigen Fluorescent Immunoassay (FIA) (Quidel Corporation) compared with real-time reverse transcription-polymerase chain reaction (RT-PCR) for SARS-CoV-2 detection among asymptomatic and symptomatic persons at two universities in Wisconsin. During September 28-October 9, a total of 1,098 paired nasal swabs were tested using the Sofia SARS Antigen FIA and real-time RT-PCR. Virus culture was attempted on all antigenpositive or real-time RT-PCR-positive specimens. Among 871 (79%) paired swabs from asymptomatic participants, the antigen test sensitivity was 41.2%, specificity was 98.4%, and in this population the estimated positive predictive value (PPV) was 33.3%, and negative predictive value (NPV) was 98.8%. Antigen test performance was improved among 227 (21%) paired swabs from participants who reported one or more symptoms at specimen collection (sensitivity = 80.0%; specificity = 98.9%; PPV = 94.1%; NPV = 95.9%). Virus was isolated from 34 (46.6%) of 73 antigen-positive or real-time RT-PCR-positive nasal swab specimens, including two of 18 that were antigen-negative and real-time RT-PCR-positive (false-negatives). The advantages of antigen tests such as low cost and rapid turnaround might allow for rapid identification of infectious persons. However, these advantages need to be
IMPORTANCEAs self-collected home antigen tests become widely available, a better understanding of their performance during the course of SARS-CoV-2 infection is needed. OBJECTIVE To evaluate the diagnostic performance of home antigen tests compared with reverse transcription-polymerase chain reaction (RT-PCR) and viral culture by days from illness onset, as well as user acceptability. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted from January to May 2021 in San Diego County, California, and metropolitan Denver, Colorado. The convenience sample included adults and children with RT-PCR-confirmed infection who used self-collected home antigen tests for 15 days and underwent at least 1 nasopharyngeal swab for RT-PCR, viral culture, and sequencing. EXPOSURES SARS-CoV-2 infection. MAIN OUTCOMES AND MEASURES The primary outcome was the daily sensitivity of home antigen tests to detect RT-PCR-confirmed cases. Secondary outcomes included the daily percentage of antigen test, RT-PCR, and viral culture results that were positive, and antigen test sensitivity compared with same-day RT-PCR and cultures. Antigen test use errors and acceptability were assessed for a subset of participants. RESULTS This study enrolled 225 persons with RT-PCR-confirmed infection (median [range] age, 29 [1-83] years; 117 female participants [52%]; 10 [4%] Asian, 6 [3%] Black or African American, 50 [22%] Hispanic or Latino, 3 [1%] Native Hawaiian or Other Pacific Islander, 145[64%] White, and 11 [5%] multiracial individuals) who completed 3044 antigen tests and 642 nasopharyngeal swabs. Antigen test sensitivity was 50% (95% CI, 45%-55%) during the infectious period, 64% (95% CI, 56%-70%) compared with same-day RT-PCR, and 84% (95% CI, 75%-90%) compared with same-day cultures. Antigen test sensitivity peaked 4 days after illness onset at 77% (95% CI, 69%-83%). Antigen test sensitivity improved with a second antigen test 1 to 2 days later, particularly early in the infection. Six days after illness onset, antigen test result positivity was 61% (95% CI, 53%-68%). Almost all (216 [96%]) surveyed individuals reported that they would be more likely to get tested for SARS-CoV-2 infection if home antigen tests were available over the counter. CONCLUSIONS AND RELEVANCEThe results of this cohort study of home antigen tests suggest that sensitivity for SARS-CoV-2 was moderate compared with RT-PCR and high compared with viral culture. The results also suggest that symptomatic individuals with an initial negative home antigen test result for SARS-CoV-2 infection should test again 1 to 2 days later because test sensitivity peaked several days after illness onset and improved with repeated testing.
Background Real-time reverse transcription polymerase chain reaction (rRT-PCR) and antigen tests are important diagnostics for SARS-CoV-2. Sensitivity of antigen tests has been shown to be lower than that of rRT-PCR; however, data to evaluate epidemiologic characteristics that affect test performance are limited. Methods Paired mid-turbinate nasal swabs were collected from university students and staff and tested for SARS-CoV-2 using both Quidel Sofia SARS Antigen Fluorescent Immunoassay (FIA) and rRT-PCR assay. Specimens positive by either rRT-PCR or antigen FIA were placed in viral culture and tested for subgenomic RNA (sgRNA). Logistic regression models were used to evaluate characteristics associated with antigen results, rRT-PCR cycle threshold (Ct) values, sgRNA, and viral culture. Results Antigen FIA sensitivity was 78.9% and 43.8% among symptomatic and asymptomatic participants respectively. Among rRT-PCR positive participants, negative antigen results were more likely among asymptomatic participants (OR 4.6, CI:1.3-15.4) and less likely among participants reporting nasal congestion (OR 0.1, CI:0.03-0.8). rRT-PCR-positive specimens with higher Ct values (OR 0.5, CI:0.4-0.8) were less likely, and specimens positive for sgRNA (OR 10.2, CI:1.6-65.0) more likely, to yield positive virus isolation. Antigen testing was >90% positive in specimens with Ct values <29. Positive predictive value of antigen test for positive viral culture (57.7%) was similar to that of rRT-PCR (59.3%). Conclusions SARS-CoV-2 antigen test advantages include low cost, wide availability and rapid turnaround time, making them important screening tests. The performance of antigen tests may vary with patient characteristics, so performance characteristics should be accounted for when designing testing strategies and interpreting results.
Widespread release of Bacillus anthracis (anthrax) or Yersinia pestis (plague) would prompt a public health emergency. During an exposure event, high-quality whole genome sequencing (WGS) can identify genetic engineering, including the introduction of antimicrobial resistance (AMR) genes. Here, we developed rapid WGS laboratory and bioinformatics workflows using a long-read nanopore sequencer (MinION) for Y. pestis (6.5 h) and B. anthracis (8.5 h) and sequenced strains with different AMR profiles. Both salt-precipitation and silica-membrane extracted DNA were suitable for MinION WGS using both rapid and field library preparation methods. In replicate experiments, nanopore quality metrics were defined for genome assembly and mutation analysis. AMR markers were correctly detected and >99% coverage of chromosomes and plasmids was achieved using 100,000 raw sequencing reads. While chromosomes and large and small plasmids were accurately assembled, including novel multimeric forms of the Y. pestis virulence plasmid, pPCP1, MinION reads were error-prone, particularly in homopolymer regions. MinION sequencing holds promise as a practical, front-line strategy for on-site pathogen characterization to speed the public health response during a biothreat emergency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.