“…When the communication does not cover the entire target area, the agent can obtain a locally optimal coverage strategy. Bromo et al (2023) presented PPO method for UAV fleet coverage planning in unexplored areas with obstacles, aiming to reduce steps and energy needed for full coverage while avoiding collisions.…”
The challenge of spatial resource allocation is pervasive across various domains such as transportation, industry, and daily life. As the scale of real-world issues continues to expand and demands for real-time solutions increase, traditional algorithms face significant computational pressures, struggling to achieve optimal efficiency and real-time capabilities. In recent years, with the escalating computational power of computers, the remarkable achievements of reinforcement learning in domains like Go and robotics have demonstrated its robust learning and sequential decision-making capabilities. Given these advancements, there has been a surge in novel methods employing reinforcement learning to tackle spatial resource allocation problems. These methods exhibit advantages such as rapid solution convergence and strong model generalization abilities, offering a new perspective on resolving spatial resource allocation problems. Despite the progress, reinforcement learning still faces hurdles when it comes to spatial resource allocation. There remains a gap in its ability to fully grasp the diversity and intricacy of real-world resources. The environmental models used in reinforcement learning may not always capture the spatial dynamics accurately. Moreover, in situations laden with strict and numerous constraints, reinforcement learning can sometimes fall short in offering feasible strategies. Consequently, this paper is dedicated to summarizing and reviewing current theoretical approaches and practical research that utilize reinforcement learning to address issues pertaining to spatial resource allocation. In addition, the paper accentuates several unresolved challenges that urgently necessitate future focus and exploration within this realm and proposes viable approaches for these challenges. This research furnishes valuable insights that may assist scholars in gaining a more nuanced understanding of the problems, opportunities, and potential directions concerning the application of reinforcement learning in spatial resource allocation.
“…When the communication does not cover the entire target area, the agent can obtain a locally optimal coverage strategy. Bromo et al (2023) presented PPO method for UAV fleet coverage planning in unexplored areas with obstacles, aiming to reduce steps and energy needed for full coverage while avoiding collisions.…”
The challenge of spatial resource allocation is pervasive across various domains such as transportation, industry, and daily life. As the scale of real-world issues continues to expand and demands for real-time solutions increase, traditional algorithms face significant computational pressures, struggling to achieve optimal efficiency and real-time capabilities. In recent years, with the escalating computational power of computers, the remarkable achievements of reinforcement learning in domains like Go and robotics have demonstrated its robust learning and sequential decision-making capabilities. Given these advancements, there has been a surge in novel methods employing reinforcement learning to tackle spatial resource allocation problems. These methods exhibit advantages such as rapid solution convergence and strong model generalization abilities, offering a new perspective on resolving spatial resource allocation problems. Despite the progress, reinforcement learning still faces hurdles when it comes to spatial resource allocation. There remains a gap in its ability to fully grasp the diversity and intricacy of real-world resources. The environmental models used in reinforcement learning may not always capture the spatial dynamics accurately. Moreover, in situations laden with strict and numerous constraints, reinforcement learning can sometimes fall short in offering feasible strategies. Consequently, this paper is dedicated to summarizing and reviewing current theoretical approaches and practical research that utilize reinforcement learning to address issues pertaining to spatial resource allocation. In addition, the paper accentuates several unresolved challenges that urgently necessitate future focus and exploration within this realm and proposes viable approaches for these challenges. This research furnishes valuable insights that may assist scholars in gaining a more nuanced understanding of the problems, opportunities, and potential directions concerning the application of reinforcement learning in spatial resource allocation.
“…The simulation was performed within Gazebo [ 157 ] and three Turtlebot3 Waffle Pi mobile robots were used to explore an unknown room during validation. Bromo [ 53 ], in his thesis, used MADRL on a team of UAVs using a modified version of PPO to map an area. During training, the policy function is shared among the robots and updated based on their current paths.…”
Section: Multi-robot System Applications Of Multi-agent Deep Reinforc...mentioning
confidence: 99%
“…Another popular algorithm in the multi-robot domain is PPO, potentially because of its relatively simple implementation [ 43 ]. PPO-clip and PPO-penalty are its two primary variants that are used in robotics [ 52 , 53 , 54 , 55 , 56 , 57 ].…”
Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning.
The use of Unmanned Aerial Vehicles (UAVs) for agricultural monitoring and management offers additional advantages over traditional methods, ranging from cost reduction to environmental protection, especially when they utilize Machine Learning (ML) methods, and Internet of Things (IoT). This article presents an autonomous fleet of heterogeneous UAVs for use in regenerative farming the result of a synthesis of Deep Reinforcement Learning (DRL), Ant Colony Optimization (ACO) and IoT. The resulting aerial framework uses DRL for fleet autonomy and ACO for fleet synchronization and task scheduling inflight. A 5G Multiple Input Multiple Output-Long Range (MIMO-LoRa) antenna enhances data rate transmission and link reliability. The aerial framework, which has been originally prototyped as a simulation to test the concept, is now developed into a functional proof-of-concept of autonomous fleets of heterogeneous UAVs. For assessing performance, the paper uses Normalized Difference Vegetation Index (NDVI), Mean Squared Error (MSE) and Received Signal Strength Index (RSSI). The 5G MIMO-LoRa antenna produces improved results with four key performance indicators: Reflection Coefficient (S11), Cumulative Distribution Functions (CDF), Power Spectral Density Ratio (Eb/No), and Bit Error Rate (BER).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.