The graph-search algorithms developed between 60s and 80s were widely used in many fields, from robotics to video games. The A* algorithm shall be mentioned between some of the most important solutions explicitly oriented to motion-robotics, improving the logic of graph search with heuristic principles inside the loop. Nevertheless, one of the most important drawbacks of the A* algorithm resides in the heading constraints connected with the grid characteristics. Different solutions were developed in the last years to cope with this problem, based on postprocessing algorithms or on improvements of the graph-search algorithm itself. A very important one is Theta* that refines the graph search allowing to obtain paths with "any" heading. In the last two years, the Flight Mechanics Research Group of Politecnico di Torino studied and implemented different path planning algorithms. A
In this paper, a sampling-based Stochastic Model Predictive Control algorithm is proposed for discrete-time linear systems subject to both parametric uncertainties and additive disturbances. One of the main drivers for the development of the proposed control strategy is the need of reliable and robust guidance and control strategies for automated rendezvous and proximity operations between spacecraft. To this end, the proposed control algorithm is validated on a floating spacecraft experimental testbed, proving that this solution is effectively implementable in real-time. Parametric uncertainties due to the mass variations during operations, linearization errors, and disturbances due to external space environment are simultaneously considered.The approach enables to suitably tighten the constraints to guarantee robust recursive feasibility when bounds on the uncertain variables are provided. Moreover, the offline sampling approach in the control design phase shifts all the intensive computations to the offline phase, thus greatly reducing the online computational cost, which usually constitutes the main limit for the adoption of Stochastic Model Predictive Control schemes, especially for low-cost on-board hardware. Numerical simulations and experiments show that the approach provides probabilistic guarantees on the success of the mission, even in rather uncertain and noise situations, while improving the spacecraft performance in terms of fuel consumption.
The graph-search algorithms developed between 60s and 80s were widely used in many fields, from robotics to video games. The A* algorithm shall be mentioned between some of the most important solutions explicitly oriented to motion-robotics, improving the logic of graph search with heuristic principles inside the loop. Nevertheless, one of the most important drawbacks of the A* algorithm resides in the heading constraints connected with the grid characteristics. Different solutions were developed in the last years to cope with this problem, based on postprocessing algorithms or on improvements of the graph-search algorithm itself. A very important one is Theta* that refines the graph search allowing to obtain paths with "any" heading. In the last two years, the Flight Mechanics Research Group of Politecnico di Torino studied and implemented different path planning algorithms. A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.