We present a novel robotic telepresence platform composed by a semi-autonomous mobile robot based on a cloud robotics framework, which has been developed with the aim of enabling mobility impaired people to enjoy museums and archaeological sites that would be otherwise inaccessible. Such places, in fact, very often are not equipped to provide access for mobility impaired people, in particular because these aids require dedicated infrastructures that may not fit within the environment and large investments. For this reason, people affected by mobility impairments are often unable to enjoy a part or even the entire museum experience. Solutions allowing mobility impaired people to enjoy museum experience are often based on recorded tours, thus they do not allow active participation of the user. On the contrary, the presented platform is intended to allow users to enjoy completely the museum round. A robot equipped with a camera is placed within the museum and users can control it in order to follow predefined tours or freely explore the museum. Our solution ensures that users see exactly what the robot is seing in real-time. The cloud robotics platform controls both navigation capabilities and teleoperation. Navigation tasks are intended to let the robot reliably follow pre-defined tours, while main concern of teleoperation tasks is to ensure robot safety (e.g., by means of dynamic obstacle detection and avoidance software). Proposed platform has been optimized to maximize user experience.
Modeling and controlling highly nonlinear, multivariable, unstable, coupled and underactuated systems are challenging problems to which a unique solution does not exist. Modeling and control of Unmanned Aerial Vehicles (UAVs) with four rotors fall into that category of problems. In this paper, a nonlinear quadrotor UAV dynamical model is developed with the Newton–Euler method, and a control architecture is proposed for 3D trajectory tracking. The controller design is decoupled into two parts: an inner loop for attitude stabilization and an outer loop for trajectory tracking. A few attitude stabilization methods are discussed, implemented and compared, considering the following control approaches: Proportional–Integral–Derivative (PID), Linear–Quadratic Regulator (LQR), Model Predictive Control (MPC), Feedback Linearization (FL) and Sliding Mode Control (SMC). This paper is intended to serve as a guideline work for selecting quadcopters’ control strategies, both in terms of quantitative and qualitative considerations. PID and LQR controllers are designed, exploiting the model linearized about the hovering condition, while MPC, FL and SMC directly exploit the nonlinear model, with minor simplifications. The fast dynamics ensured by the SMC-based controller together with its robustness and the limited estimated command effort of the controller make it the most promising controller for quadrotor attitude stabilization. The outer loop consists of three independent PID controllers: one for altitude control and the other two, together with a dynamics’ inversion, are entitled to the computation of the reference attitude for the inner loop. The capability of the controlled closed-loop system of executing complex trajectories is demonstrated by means of simulations in MATLAB/Simulink®.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.