Multi robot systems are envisioned to play an important role in many robotic applications. A main prerequisite for a team deployed in a wide unknown area is the capability of autonomously navigate, exploiting the information acquired through the on-line estimation of both robot poses and surrounding environment model, according to Simultaneous Localization And Mapping (SLAM) framework. As team coordination is improved, distributed techniques for filtering are required in order to enhance autonomous exploration and large scale SLAM increasing both efficiency and robustness of operation. Although Rao-Blackwellized Particle Filters (RBPF) have been demonstrated to be an effective solution to the problem of single robot SLAM, few extensions to teams of robots exist, and these approaches are characterized by strict assumptions on both communication bandwidth and prior knowledge on relative poses of the teammates. In the present paper we address the problem of multi robot SLAM in the case of limited communication and unknown relative initial poses. Starting from the well established single robot RBPF-SLAM, we propose a simple technique which jointly estimates SLAM posterior of the robots by fusing the prioceptive and the eteroceptive information acquired by each teammate. The approach intrinsically reduces the amount of data to be exchanged among the robots, while taking into account the uncertainty in relative pose measurements. Moreover it can be naturally extended to different communication technologies (bluetooth, RFId, wifi, etc.) regardless their sensing range. The proposed approach is validated through experimental test.
Autonomous exploration under uncertain robot position requires the robot to plan a suitable motion policy in order to visit unknown areas while minimizing the uncertainty on its pose. The corresponding problem, namely active SLAM (Simultaneous Localization and Mapping) and exploration has received a large attention from the robotic community for its relevance in mobile robotics applications. In this work we tackle the problem of active SLAM and exploration with Rao-Blackwellized Particle Filters. We propose an application of Kullback-Leibler divergence for the purpose of evaluating the particle-based SLAM posterior approximation. This metric is then applied in the definition of the expected gain from a policy, which allows the robot to autonomously decide between exploration and place revisiting actions (i.e., loop closing). The technique is shown to enhance robot awareness in detecting loop closing occasions, which are often missed when using other state-of-the-art approaches. Results of extensive tests are reported to support our claims.
In this paper we investigate the problem of Simultaneous Localization and Mapping (SLAM) for a multi robot system. Relaxing some assumptions that characterize related work we propose an application of Rao-Blackwellized Particle Filters (RBPF) for the purpose of cooperatively estimating SLAM posterior. We consider a realistic setup in which the robots start from unknown initial poses (relative locations are unknown too), and travel in the environment in order to build a shared representation of the latter. The robots are required to exchange a small amount of information only when a rendezvous event occurs and to measure relative poses during the meeting. As a consequence the approach also applies when using an unreliable wireless channel or short range communication technologies (bluetooth, RFId, etc.). Moreover it allows to take into account the uncertainty in relative pose measurements. The proposed technique, which constitutes a distributed L. Carlone (B) · M. Kaouk Ng CSPP,
We present a novel robotic telepresence platform composed by a semi-autonomous mobile robot based on a cloud robotics framework, which has been developed with the aim of enabling mobility impaired people to enjoy museums and archaeological sites that would be otherwise inaccessible. Such places, in fact, very often are not equipped to provide access for mobility impaired people, in particular because these aids require dedicated infrastructures that may not fit within the environment and large investments. For this reason, people affected by mobility impairments are often unable to enjoy a part or even the entire museum experience. Solutions allowing mobility impaired people to enjoy museum experience are often based on recorded tours, thus they do not allow active participation of the user. On the contrary, the presented platform is intended to allow users to enjoy completely the museum round. A robot equipped with a camera is placed within the museum and users can control it in order to follow predefined tours or freely explore the museum. Our solution ensures that users see exactly what the robot is seing in real-time. The cloud robotics platform controls both navigation capabilities and teleoperation. Navigation tasks are intended to let the robot reliably follow pre-defined tours, while main concern of teleoperation tasks is to ensure robot safety (e.g., by means of dynamic obstacle detection and avoidance software). Proposed platform has been optimized to maximize user experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.