This paper reviews an important integral test facility (ITF) named PKL (primary loop in German), which is designed based on a 4-loop pressurized water reactor (PWR) with the power 1 300 MWe, and especially concentrates on two aspects: (1) the tests at each developmental period of the facility until 2020, which is a typical microcosm of nuclear safety research; (2) the simulation of the PKL facility tests by using system thermal-hydraulic (STH) codes, especially RELAP5, TRACE and ATHLET. The results from the literature showed that all of these codes could reproduce the accident scenarios on the PKL facility to some extent, and simulate the complex phenomena both in the reactor pressurized vessel (RPV) and in the loops well, except some local phenomena (e. g., peak cladding temperature (PCT)). Furthermore, this paper presents some suggestions on PKL further tests. Especially, the sensitivity studies of initial conditions (ICs) and boundary conditions (BCs), test studies related to Extensive damage mitigation guidelines (EDMGs) and FLEX strategies, anticipated transients without scram (ATWS), detailed core section model, combination with other ITF or separate effects test (SET) facilities, and tests on advanced conception reactors are emphasized.