2021
DOI: 10.4171/dm/838
|View full text |Cite
|
Sign up to set email alerts
|

Relations between infinitesimal non-commutative cumulants

Abstract: Boolean, free and monotone cumulants as well as relations among them, have proven to be important in the study of non-commutative probability theory. Quite notably, Boolean cumulants were successfully used to study free infinite divisibility via the Boolean Bercovici-Pata bijection. On the other hand, in recent years the concept of infinitesimal non-commutative probability has been developed, together with the notion of infinitesimal cumulants which can be useful in the context of combinatorial questions.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 43 publications
(134 reference statements)
0
0
0
Order By: Relevance