A MoNx coating serves as an effective wear protection layer and is crucial for the investigation of its tribological characteristics at various temperatures. This study examined the tribological characteristics of MoNx coatings that were deposited through high-power pulsed magnetron sputtering (HiPIMS) in an Ar/N2 environment with varying N2 partial pressures. The microstructures and mechanical properties of the coatings were elucidated using scanning electron microscopy, grazing-incidence-angle X-ray diffraction, energy-dispersive spectroscopy, and nanoindentation. The dry friction performances of the coatings at different heating temperatures were studied using a ball-on-disk tribometer. The MoNx coating produced by HiPIMS was composed primarily of fcc−Mo2N and featured a fine, dense column crystal with a maximum hardness of 28.8 GPa. The MoNx coatings exhibited excellent lubrication and wear reduction properties at room temperature (RT). The dry friction performances of the MoNx coatings at elevated temperatures were expected to depend on the growth of the MoO3 tribolayer. At relatively low temperatures (300 °C and 400 °C), the MoO3 tribolayer grew slowly and was not enough to provide good lubrication, causing increases in the dry friction of the coatings. However, the δ−MoN phase formed in the MoNx coating deposited at a high N2 partial pressure could facilitate the formation of MoO3 and thus decreased the friction coefficient at 400 °C. At the relatively high heating temperature of 500 °C, however, the MoO3 tribolayer grew so rapidly that the oxide layer became thick, resulting in an increase in the wear rate. It is believed that tuning the growth rate of MoO3 via optimizing the composition and structure of the MoNx coatings might be a useful way to improve the dry friction at various elevated temperatures.