Abstract. Taxa with smaller individuals tend to have shorter generation times and higher local abundance and diversity. The scaled specialization hypothesis (SSH) posits that taxocenes of smaller individuals should differentiate more rapidly and thoroughly along physiochemical gradients of a given age and extent. In a Panama rainforest, we evaluated how bacteria, fungi, and ants responded to two such gradients: one topographic and the other arising from nine years of NPK fertilization. Terminal restriction fragment length polymorphism (T-RFLP) delineated bacteria and fungi operational taxonomic units (OTUs); traditional taxonomy delineated the ants. Bacteria had higher local species richness than fungi and ants (averaging 48 vs. 30 vs. 6 OTUs in ,0.25 m 2 ). Bacteria OTUs were also more widely distributed (17% of OTUs were found on !50% of sample plots compared to 3% for fungi and ants). Consistent with SSH, bacterial composition differed across short-term (þN and þP) and long-term (topographic) gradients; fungal taxocenes differed only along the long-term gradient; and ant taxocenes were homogenous across both. Body size can help predict community responses to a changing environment.