Water treatment residues (WTR), the by-products of the production of potable water, are chemically benign, inorganic materials which are suitable for disposal by land application, though they are frequently reported to have high phosphorus (P) sorption capacities. An understanding of the distribution of inherent P in WTR is, however, required, if sorption-desorption processes are to be correctly interpreted. The aim of this investigation was to characterise the chemical properties relevant to P-sorption/desorption processes of 15 South African WTR and to determine the inherent distribution of P within the WTR using a chemical fractionation procedure. The pH, exchangeable Ca and organic carbon content ranged from 4.77 to 8.37, 238 to 8 980 mg·kg -1 and 0.50 to 11.6 g·100 g , respectively. Mechanisms of P-retention are residue specific, being dependent on the chemical properties of the WTR. Elevated Ca and amorphous Al and Fe concentrations did, nevertheless, suggest that all residues had the capacity to adsorb high amounts of P and to retain this P in forms unavailable for plant uptake.