The superior antifouling performance of zwitterionic materials is commonly linked to their hydration structure, in which tight surface binding of water molecules inhibits solute adsorption. However, there is comparatively little direct experimental data on the hydration water structure and dynamics around zwitterionic moieties, including the longer-range behavior of the hydration shell that modulates the approach of solutes to the polymer surface. This work experimentally probes the dynamics of the diffusing hydration water molecules around a series of zwitterion chemistries using Overhauser dynamic nuclear polarization relaxometry. Surprisingly, water dynamics measured within ∼1 nm of the zwitterions were minimally inhibited compared to those near uncharged hydrophilic or cationic side chains. Specific dissolved ions further enhance the water diffusivity near the zwitterions, rendering the hydration shell bulk water-like. These results that the hydration of a zwitterion surface is nearly indistinguishable from bulk water suggest that these surfaces are "invisible" to biological constituents in a manner tunable by the ionic environment and the chemical design of the zwitterionic surface.