BACKGROUND: Testing for antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been instrumental in detecting previous exposures and analyzing vaccine-elicited immune responses. Here, we describe a scalable "Made-in-Canada" solution that can detect and quantify SARS-CoV-2 antibodies, discriminate between natural infection- and vaccination-induced responses, and assess antibody-mediated inhibition of the spike-angiotensin converting enzyme 2 (ACE2) interaction. METHODS: We developed a set of methods and reagents to detect SARS-CoV-2 antibodies by enzyme-linked immunosorbent assay (ELISA). The main assays focus on the parallel detection of immunoglobulin (Ig)Gs against the spike trimer, its receptor binding domain (RBD), and the nucleocapsid (N) protein. These antigens are complemented by a detection antibody (human anti-IgG fused to horseradish peroxidase (HRP)) and a positive control reference antibody (recombinant IgG against the RBD), permitting intra- and inter-laboratory comparisons. Using this toolkit and commercial reagents, we optimized automated ELISAs on two different high throughput platforms to measure antibody responses to SARS-CoV-2 antigens. The assays were calibrated to a reference standard from the World Health Organization. We also automated a surrogate neutralization (sn)ELISA that measures inhibition of ACE2-Spike or -RBD interactions by antibodies using biotinylated ACE2. RESULTS: Our individual IgG-based ELISAs measure antibody levels in single-point measurements in reference to a standard antibody curve to accurately distinguish non-infected and infected individuals (area under the curve > 0.96 for each assay). Positivity thresholds can be established in individual assays using precision-recall analysis (e.g., by fixing the false positive rate), or more stringently, by scoring against the distribution of the means of negative samples across multiple assays performed over several months. For seroprevalence assessment (in a non-vaccinated cohort), classifying a sample as positive if antibodies were detected for at least 2 of the 3 antigens provided the highest specificity. In vaccinated cohorts, increases in anti-spike and -RBD (but not -N) antibodies are observed. Here, we present detailed protocols to perform these assays using either serum/plasma or dried blood spots both manually and on two automated platforms, and to express the results in international units to facilitate data harmonization and inter-study comparisons. We also demonstrate that the snELISA can be performed automatically at single points, increasing the scalability of this functional assay for large seroprevalence studies. INTERPRETATION: The ability to measure antibodies to three viral antigens and identify neutralizing antibodies capable of disrupting spike-ACE2 interactions in high-throughput assays enables large-scale analyses of humoral immune responses to SARS-CoV-2 infection and vaccination. The "Made-in-Canada" set of protein reagents, produced at the National Research Council of Canada are publicly available to enable the up-scaling of standardized serological assays, permitting nationwide data comparison and aggregation.