Fullerenes are sheets of sp 2 carbon atoms wrapped around to form spheres. With this simple consideration, we have in the present study devised and (with over 3600 DFT data points) successfully validated a simple model, termed R+D, for estimating the relative energies of fullerenes. This model contains a resonance component to account for the intrinsic differences between the πenergies of different fullerenes, and a deformation component for treating the distortions from planarity. Notably, we find that both terms (and they alone) are required to obtain good relative energies, which lends support to the formulation of the R+D model. An interesting finding is that for some medium-sized IPR fullerenes, their isomers show similar variations in the two components. We deduce that these fullerenes may represent a good opportunity for tuning molecular properties for practical applications. We hope that the promising results of the present study will encourage further investigations into fullerenes from a fundamental perspective.