Renal fibrosis is a common feature of chronic kidney disease (CKD). To inhibit the CKD process, it is important to prevent renal fibrosis, though CKD remains incurable. Renal fibrosis can be inhibited by relaxin in several experimental models, but the mechanism of relaxin for antifibrotic potential is still not clear. And here we have studied the role of relaxin in macrophage polarization and renal inflammation after unilateral ureteral obstruction (UUO). Our results show that relaxin can downregulate the Toll-like receptor (TLR) 4 signaling, shift macrophage polarization toward the M2 phenotype and ameliorat renal fibrosis in the early stages of UUO. In vitro experiments, it has been confirmed that relaxin can downregulate the TLR4 signaling and induce the M2 macrophage transition. Furthermore, the transitional actions of macrophage phenotype induced by relaxin are significantly blocked by TAK-242, a TLR4 antagonist, in vitro experiments. Thus, there is a novel mechanism of relaxin for antifibrosis that shifts macrophage polarization toward the M2 phenotype via inhibition of TLR4 signaling.