The Cd‐free Cu2ZnSnS4 (CZTS) solar cell is an ideal candidate for producing low‐cost clean energy through green materials owing to its inherent environmental friendliness and earth abundance. Nevertheless, sulfide CZTS has long suffered from severe open‐circuit voltage (VOC) deficits, limiting the full exploitation of performance potential and further progress. Here, we propose an effective strategy to alleviate the non‐radiative VOC loss by manipulating the phase evolution during the critical kesterite phase formation stage. With a Ge cap layer on the precursor, premature CZTS grain formation is suppressed at low temperatures, leading to fewer nucleation centers at the initial crystallization stage. Consequently, the CZTS grain formation and crystallization are deferred to high temperatures, resulting in enhanced grain interior quality and less unfavorable grain boundaries in the final film. As a result, a champion efficiency of 10.7% for Cd‐free CZTS solar cells with remarkably high VOC beyond 800 mV (63.2% Schockley‐Queisser limit) is realized, indicating that non‐radiative recombination is effectively inhibited. This strategy may advance other compound semiconductors seeking high‐quality crystallization.This article is protected by copyright. All rights reserved