In this paper, we propose a failure mechanism cumulative model that considers the loading history of the load sharing effect in a k-out-of-n system. Three types of failure mechanisms are considered, continuous degradation, compound point degradation, and sudden failure due to shock. By constructing a logic diagram with functional dependence gate, the load-sharing effect can be explained from the failure mechanism point of view using a mechanism-acceleration gate that shows that when one component fails, the failure mechanisms of the other surviving components will be accelerated. By deriving the total damage equation and a constructing failure behavior model, the system reliability of a k-out-of-n system with different types of failure mechanisms were evaluated. A voltage stabilizing system that contains a 1-out-of-2 subsystem, or a 2-out-of 3 subsystem was used to illustrate the practical applicability of the proposed approach. A combined Monte Carlo and binary decision diagram method was used in the numerical simulation process. INDEX TERMS K-out-of-n system, load sharing effect, failure mechanism cumulative model, functional dependence, acceleration.