Our study aims to obtain the highest level of reliability for a quadcopter, taking financial and mass limitations into account, to achieve the highest level of reliability with the lowest mass and cost. For this purpose, we first calculated the reliability and the relationships that govern it, and based on these relationships, we determined the reliability of the quadcopter subsystems. In order to achieve the highest level of reliability, we utilized optimization algorithms. It is possible to increase the reliability of a system through several methods, such as enhancing the quality of parts and components, using surplus components, improving the quality of parts and components by always using surplus components, and redesigning the system. This study examines the possibility of increasing quadcopter reliability by using additional parts and optimizing it using the firefly algorithm. Lastly, in order to validate the results obtained from the firefly algorithm, we implemented the problem once again using the genetic algorithm and compared the results obtained from both algorithms. After 20 times of running the algorithms, the optimal reliability values were 0.99925 for the firefly algorithm and 0.99999 for the genetic algorithm.