2023
DOI: 10.1016/j.ress.2022.108811
|View full text |Cite
|
Sign up to set email alerts
|

Reliable neural networks for regression uncertainty estimation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 16 publications
0
4
0
Order By: Relevance
“…Extending our method to more general tasks with continuous action space would be a valuable direction for future investigation. To scale USN to continuous action space, regression uncertainty estimation methods might be helpful for sample selection (Gustafsson et al, 2023;Tohme et al, 2023). Secondly, USN only selects samples based on the positive correlation between loss and uncertainty estimations when the noise rate increases.…”
Section: Discussionmentioning
confidence: 99%
“…Extending our method to more general tasks with continuous action space would be a valuable direction for future investigation. To scale USN to continuous action space, regression uncertainty estimation methods might be helpful for sample selection (Gustafsson et al, 2023;Tohme et al, 2023). Secondly, USN only selects samples based on the positive correlation between loss and uncertainty estimations when the noise rate increases.…”
Section: Discussionmentioning
confidence: 99%
“…test cases), as well as more recent works (Stephens 2015;Cava et al 2019;La Cava et al 2019;Virgolin et al 2019;Cranmer et al 2020;Cranmer 2020;Kommenda et al 2020;de Franca & Aldeia 2021;Virgolin et al 2021). In addition, SR has been implemented using various methods ranging from brute force to (un-)guided Monte Carlo, all the way to probabilistic searches (McConaghy 2011;Jin et al 2019;Kammerer et al 2020;Brence et al 2021;Bartlett et al 2023), as well as through problem simplification algorithms (Luo et al 2022;Tohme et al 2023).…”
Section: Related Work-a Brief Survey Of Modern Srmentioning
confidence: 99%
“…Modern SR (Schmidt & Lipson 2009, 2011Kommenda et al 2020;Kammerer et al 2020;Bartlett et al 2023b;Brence et al 2021;Jin et al 2019;Luo et al 2022;Tohme et al 2023;Udrescu & Tegmark 2020;Kamienny et al 2022;Biggio et al 2020Biggio et al , 2021Vastl et al 2024;Kamienny et al 2023;Martius & Lampert 2017;Brunton et al 2016;Zheng et al 2022;Sahoo et al 2018;Petersen et al 2021a;Landajuela et al 2022;Holt et al 2023;Scholl et al 2023;Sousa et al 2024;Fiorini et al 2024;Shojaee et al 2024;Zhang & Lei 2024;Cheng & Alkhalifah 2024;He et al 2024;Makke & Chawla 2022;Angelis et al 2023;Faris et al 2024;Tian et al 2024;Michishita 2024;Melching et al 2024;Meidani et al 2024;Li et al 2024aLi et al , 2024bChen et al 2024) aims to use the immense computational resources at our disposal to search through possible analytic descriptions in terms of a set of functions and operators (e.g., x, +, −, ×, /, sin, cos, exp log, ...) to best fit some numerical data set (x, y) we wish to model. Concretely, one seeks s...…”
Section: Introductionmentioning
confidence: 99%