Physical and chemical strategies that place designed molecules in spatially separated regions of surfactant-templated mesostructured silicate thin films are used to prepare films containing rhodamine 6G (R6G), lanthanide complexes, and both simultaneously. Fluorescence and photoexcitation spectra of R6G in amorphous and structured thin films show that it is located inside the surfactant micelles of structured thin films. A silylated ligand that binds lanthanides condenses to form part of the silica framework and causes the lanthanide to localize in the silica. Luminescence and photoexcitation spectra show that energy transfer from the metal complex to R6G occurs in the films. R6G quenches Tb emission in a concentration-dependent manner. Energy transfer efficiency is calculated using the Tb luminescence lifetime, and this quantity is used to calculate the distance between Tb and R6G with the aid of Forster theory.