Adsorption is one commonly used technique for treatment of petroleum contaminated water. This study aims to modify the adsorption surface of bentonite clay and activated carbon as organoclay and acid modified activated carbon, respectively. The modified and unmodified adsorbents were characterized by analysis of specific surface area, cation exchange capacity and point of zero charge (pH pzc). Furthermore, adsorbents efficiencies were evaluated in the adsorption of petroleum hydrocarbon from oil-water emulsion. The synthetic wastewater samples were generated by emulsifying diesel oil in distilled water to investigate the effects of: (i) contact time, (ii) initial hydrocarbon concentration, (iii) pH, and (iv) adsorption isotherm. The modification of bentonite and activated carbon produced higher adsorption capacity than the unmodified adsorbents. In addition, the results showed that the adsorption of hydrocarbon depend strongly on pH and increased with increasing contact time and the equilibrium was reached after 3 and 4 hr with clays and activated carbons, respectively. The hydrocarbon removal efficiency achieved in the following order: organic bentonite > acid modified activated carbon > bentonite > activated carbon. The modified bentonite is an excellent alternative in the adsorption of hydrocarbon from oil-water emulsion removal with the highest adsorption capacity (48 mg/g at 2 g/L). Freundlich isotherm was best to describe the adsorption isotherm of hydrocarbons from oil-water emulsion by the all adsorbents.