a b s t r a c tAn activated carbon fiber (ACF) cathode was fabricated and used to treat glyphosate containing wastewater by the Electro-Fenton (EF) process. The results showed that glyphosate was rapidly and efficiently degraded and the BOD 5 /COD ratio was increased to >0.3 implying the feasibility of subsequent treatment of the treated wastewater by biological methods. The results of ion chromatography and HPLC measurements indicated that glyphosate was completely decomposed. Effective OH generation and rapid recycling/recovery of the Fe 2þ ions at the cathode were responsible primarily for the high performance of the ACF-EF process. Factors such as inlet oxygen gas flow rate, Fe 2þ dosage, initial glyphosate concentration, applied current intensity, and solution pH that may affect the efficiency of the ACF-EF process were further studied and the optimum operation condition was established. Results of SEM/EDX, BET and XPS analysis showed the deposition of highly dispersed fine Fe 2 O 3 particles on the ACF surface during the EF reaction. The possibility of using the Fe 2 O 3 -ACF as iron source in the EF process was assessed. Results showed that the Fe 2 O 3 -ACF electrode was effective in degrading glyphosate in the EF process. The deposition of Fe 2 O 3 particles on the ACF electrode had no adverse effect on the reusability of the ACF cathode.