To cite this article: Izabela Krupińska (2016) The impact of the oxidising agent type and coagulant type on the effectiveness of coagulation in the removal of pollutants from underground water with an increased content of organic substances, Journal of Environmental Engineering and Landscape Management, 24:1, 70-78, Abstract. Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses suggested the survival and elevation of the introduced bacterial strains throughout the experiment. Reference to this paper should be made as follows: Nõ lvak, H.; Truu, J.; Limane, B.; Truu, M.; Cepurnieks, G.; Bartkevičs, V.; Juhanson, J.; Muter, O. 2013. Microbial community changes in TNT spiked soil bioremediation trial using biostimulation, phytoremediation and bioaugmentation, Journal of Environmental Engineering and Landscape Management 21(3): 153Á162. http://dx.
abstract.The article presents the results of studies concerning the impact of the method of Fe(II) ion oxidisation on the effectiveness of coagulation in the removal of pollutants from underground water with an increased content of organic substances (TOC up to 5.338mgC/dm 3 ). In order to oxidise the Fe (II) ions before the coagulation process, the underground water was subjected to aeration, or either potassium manganate (VII) or hydrogen peroxide were dosed in the stoichiometric amount in view of the concentration of Fe (II). The efficiencies of three coagulants were compared: that of aluminium sulphate (VI), polyaluminium chloride (PAX XL-60) and iron (III) sulphate (VI) -PIX-112. Coagulant doses expressed in mgAl/dm 3 or mgFe/dm 3 and changed within the range of 1 to 6 mgAl(Fe)/dm 3 . Volume coagulation was performed in 1-dm 3 groundwater samples using 1-minute rapid mix (250 rpm) and 25-minute slow mix (30 rpm) followed by 2-hour sedimentation. It has been proven that the type of oxidising agent and coagulant, as well as their dose, co-determines the effectiveness of the removal of the pollutants. Among the used methods of iron (II) oxidisation, the best effects have been achieved by potassium manganate (VII) with regards to the effects of the reduction...