Pharmaceutical residues in the aquatic environment represent an emerging environmental problem, because many pharmaceuticals are refractory towards conventional waste water treatment. This study focussed on the oxidation of the sulfonamide antibiotic sulfamethoxazole (SMX) at a boron-doped diamond anode, at which reactive hydroxyl radicals are formed. Electrochemical oxidation led to mineralization with high current efficiency, but without the formation of known toxic products of partial oxidation. A ''mixed'' kinetic order with respect to substrate concentration was observed; the kinetics could be shifted in the direction of either diffusion control (first order in SMX) or current control (zero order in SMX) by adjusting the substrate concentration and current density. Alternatively, the electrooxidation could be described by a model, applicable to a wide range of reaction conditions, in which the kinetic orders with respect to current and initial substrate concentration were approximately 0.4 and 0.5, respectively.