A nano-HTiO2@activated carbon-amorphous silica nanocomposite catalyst (HTiO2@AC/SiO2) is utilized to photo breakdown catalytically and adsorb chlorpyrifos insecticide. SEM, TEM, and X-ray diffraction were used to examine HTiO2@AC/SiO2, synthesized through sol–gel synthesis. With an average size of 7–9 nm, the crystallized form of HTiO2 is the most common form found. At varied pH, catalyst doses, agitation speed, initial pesticide concentrations, contact periods, and temperatures, HTiO2@AC/SiO2 was examined for efficiency under visible light and in darkness. Because of the pseudo-second-order kinetics observed for chlorpyrifos, chemisorption is believed to dominate the adsorption process, as indicated by an estimated activation energy of 182.769 kJ/mol, which indicates that chemisorption dominates the adsorption process in this study. The maximal adsorption capacity of chlorpyrifos is 462.6 mg g−1, according to the Langmuir isotherms, which infer this value. When exposed to visible light, the adsorption capacity of HTiO2@AC/SiO2 increased somewhat as the temperature rose (283 k 323 k 373 k), indicating an exothermic change in Gibbs free energy during the process (−1.8 kJ/mol), enthalpy change (−6.02 kJ/mol), and entropy change (0.014 J/mol K), respectively, at 298.15 K. Negative (ΔS) describes a process with decreased unpredictability and suggests spontaneous adsorption. HTiO2@AC/SiO2 may be a promising material.