Selected renal cells (SRCs), a renal epithelial cell-enriched platform, are being advanced as an autologous cell-based therapy for the treatment of chronic kidney disease. However, the mechanism underlying its renal reparative and restorative effects remains to be fully elucidated. In this study, we coupled knowledgebase data with empirical findings to demonstrate that genes differentially expressed by SRCs form interactomes within tubules and glomeruli and mediate a suite of renal developmental activities including epithelial cell differentiation, renal vasculature development, and glomerular and nephron development. In culture, SRCs form organoids which self-assemble into tubules in the presence of a scaffold. Implanted into the kidneys of subtotally nephrectomized rats, SRCs are associated with comma- and S-shaped body cell formation and glomerular development, and improvement in renal filtration indices and renal microarchitecture. These data suggest that SRCs harbor nephrogenic potential, which may explain, at least in part, their therapeutic activity.