Autism Spectrum Disorder (ASD) is a severe neurodevelopmental disorder. To enhance the understanding of the gut microbiota structure in ASD children at different ages as well as the relationship between gut microbiota and fecal metabolites, we first used the 16S rRNA sequencing to evaluate the gut microbial population in a cohort of 143 children aged 2-13 years old. We found that the α-diversity of ASD group showed no significant change with age, while the TD group showed increased α-diversity with age, which indicates that the compositional development of the gut microbiota in ASD varies at different ages in ways that are not consistent with TD group. Recent studies have shown that chronic constipation is one of the most commonly obvious gastrointestinal (GI) symptoms along with ASD core symptoms. To further investigate the potential interaction effects between ASD and GI symptoms, the 30 C-ASD and their aged-matched TD were picked out to perform metagenomics analysis. We observed that C-ASD group displayed decreased diversity, depletion of species of Sutterella, Prevotella, and Bacteroides as well as dysregulation of associated metabolism activities, which may involve in the pathogenesis of C-ASD. Consistent with metagenomic analysis, liquid chromatography-mass spectrometry (LC/ MS) revealed some of the differential metabolites between C-ASD and TD group were involved in the metabolic network of neurotransmitters including serotonin, dopamine, histidine, and GABA. Furthermore, we found these differences in metabolites were associated with altered abundance of specific bacteria. The study suggested possible future modalities for ASD intervention through targeting the specific bacteria associated with neurotransmitter metabolism.
Brains from subjects who have Alzheimer's disease (AD) express inducible nitric oxide synthase (iNOS). We tested the hypothesis that iNOS contributes to AD pathogenesis. Immunoreactive iNOS was detected in brains of mice with AD-like disease resulting from transgenic expression of mutant human β-amyloid precursor protein (hAPP) and presenilin-1 (hPS1). We bred hAPP-, hPS1-double transgenic mice to be iNOS+/+ or iNOS−/−, and compared them with a congenic WT strain. Deficiency of iNOS substantially protected the AD-like mice from premature mortality, cerebral plaque formation, increased β-amyloid levels, protein tyrosine nitration, astrocytosis, and microgliosis. Thus, iNOS seems to be a major instigator of β-amyloid deposition and disease progression. Inhibition of iNOS may be a therapeutic option in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.