Machine learning develops rapidly, which has made many theoretical breakthroughs and is widely applied in various fields. Optimization, as an important part of machine learning, has attracted much attention of researchers. With the exponential growth of data amount and the increase of model complexity, optimization methods in machine learning face more and more challenges. A lot of work on solving optimization problems or improving optimization methods in machine learning has been proposed successively. The systematic retrospect and summary of the optimization methods from the perspective of machine learning are of great significance, which can offer guidance for both developments of optimization and machine learning research. In this paper, we first describe the optimization problems in machine learning. Then, we introduce the principles and progresses of commonly used optimization methods. Next, we summarize the applications and developments of optimization methods in some popular machine learning fields. Finally, we explore and give some challenges and open problems for the optimization in machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.