The electronic, structural, vibrational and elastic properties of PaN have been studied at both ambient and high pressures, using first principles methods with several commonly used parameterizations of the exchange-correlation energy. The generalized gradient approximation (GGA) reproduces the ground state properties satisfactorily. The high pressure behavior of the acoustic phonon branch along the [1, 0, 0] and [1, 1, 0] directions and the C44 elastic constant are anomalous, which signals a structural transition. With GGA exchange-correlation, a topological transition in the charge density occurs near the structural transition, which may be regarded as a quantum phase transition, where the order parameter obeys a mean field scaling law. However, here it is found that the topological transition is absent when other exchange-correlation functionals are invoked (local density approximation (LDA) and hybrid functional). This constitutes an example of GGA and LDA leading to qualitatively different predictions, and therefore it is of great interest to examine experimentally whether this topological transition occurs.