Direct photoexcitation of charges at a plasmonic metal hotspot produces energetic carriers that are capable of performing photocatalysis in the visible spectrum. However, the mechanisms of generation and transport of hot carriers are still not fully understood and under intense investigation because of their potential technological importance. Here, spectroscopic evidence proves that the reduction of dye molecules tethered to a Au(111) surface can be triggered by plasmonic carriers via a tunneling mechanism, which results in anomalous Raman intensity fluctuations. Tip‐enhanced Raman spectroscopy (TERS) helps to correlate Raman intensity fluctuations with temperature and with properties of the molecular spacer. In combination with electrochemical surface‐enhanced Raman spectroscopy, TERS results show that plasmon‐induced energetic carriers can directly tunnel to the dye through the spacer. This organic spacer chemically isolates the adsorbate from the metal but does not block photo‐induced redox reactions, which offers new possibilities for optimizing plasmon‐induced photocatalytic systems.