Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics and an important example of a redox reaction. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy . This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging. The substrate, especially ionic films , can have an important influence on the reorganization energy. Reorganization energies are measured in electrochemistry as well as with optical and photoemission spectroscopies, but not at the single-molecule limit and nor on insulating surfaces. Atomic force microscopy (AFM), with single-charge sensitivity, atomic-scale spatial resolution and operable on insulating films, overcomes these challenges. Here, we investigate redox reactions of single naphthalocyanine (NPc) molecules on multilayered NaCl films. Employing the atomic force microscope as an ultralow current meter allows us to measure the differential conductance related to transitions between two charge states in both directions. Thereby, the reorganization energy of NPc on NaCl is determined as (0.8 ± 0.2) eV, and density functional theory (DFT) calculations provide the atomistic picture of the nuclear relaxations on charging. Our approach presents a route to perform tunnelling spectroscopy of single adsorbates on insulating substrates and provides insight into single-electron intermolecular transport.
The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques.
We show charge-state manipulation of single Au adatoms on 2-11 monolayer (ML) thick NaCl films on Cu surfaces by attaching or detaching single electrons via the tip of an atomic force microscope (AFM). Tristate charge control (neutral, negatively charged, and positively charged) is achieved. On Cu(100) and Cu(111) supports, charge tristability is achieved independently of the NaCl layer thickness. In contrast, on Cu(311), only Au anions are stable on the thinnest NaCl films, but neutral and positive charge states become sufficiently long lived on films thicker than 4 ML to allow AFM-based charge-state-manipulation experiments.
Noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM) have become important tools for nanotechnology; however, their contrast mechanisms on the atomic scale are not entirely understood. Here we used chlorine vacancies in NaCl bilayers on Cu(111) as a model system to investigate atomic contrast as a function of applied voltage, tip height, and tip functionalization. We demonstrate that the AFM contrast on the atomic scale decisively depends on both the tip termination and the sample voltage. On the contrary, the local contact potential difference (LCPD) acquired with KPFM showed the same qualitative contrast for all tip terminations investigated, which resembled the contrast of the electric field of the sample. We find that the AFM contrast stems mainly from electrostatic interactions but its tip dependence cannot be explained by the tip dipole alone. With the aid of a simple electrostatic model and by density functional theory we investigate the underlying contrast mechanisms.
The two-dimensional (2D) Co oxide monolayer phase with (9 × 2) structure on Pd(100) has been investigated experimentally by scanning tunneling microscopy (STM) and theoretically by density functional theory (DFT). The high-resolution STM images reveal a complex pattern which on the basis of DFT calculations is interpreted in terms of a coincidence lattice, consisting of a CoO(111)-type bilayer with significant symmetry relaxation and height modulations to reduce the polarity in the overlayer. The most stable structure displays an unusual zig-zag type of antiferromagnetic ordering. The (9 × 2) Co oxide monolayer is energetically almost degenerate with the c(4 × 2) monolayer phase, which is derived from a single CoO(100)-type layer with a Co(3)O(4) vacancy structure. Under specific preparation conditions, the (9 × 2) and c(4 × 2) structures can be observed in coexistence on the Pd(100) surface and the two phases are separated by a smooth interfacial boundary line, which has been analyzed at the atomic level by STM and DFT. The here described 2D Co oxide nanolayer systems are characterized by a delicate interplay of chemical, electronic, and interfacial strain interactions and the associated complexities in the theoretical description are emphasized and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.