“…Initial design assumptions include the choice of outer or inner rotor topology, rated current or current density, rated voltage, power and torque, corner speed, materials, size and weight requirements. Table 2 shows the basic specifications of the Toyota Prius 2004 motor used for this analysis [19][20][21].…”
This article presents a new and powerful freeware software called MotorAnalysis-PM and discusses its application in electromagnetic design and analysis of permanent magnet (PM) motors for the electric vehicle (EV) industry. This new PM motor software utilizes both finite element (FE) and analytical methods to speed up the analysis and design process of PM motors significantly. The analysis and design methodology using MotorAnalysis-PM is presented and discussed for a 50 kW PM motor utilized in a commercial EV. To validate the accuracy of the software, the numerical results obtained from the PM motor design and analysis tool are compared with experimental results. The numerical and experimental results validate the flexibility of this software in achieving accurate motor design with short design times which is of great interest to EV and PM motor manufacturers.
“…Initial design assumptions include the choice of outer or inner rotor topology, rated current or current density, rated voltage, power and torque, corner speed, materials, size and weight requirements. Table 2 shows the basic specifications of the Toyota Prius 2004 motor used for this analysis [19][20][21].…”
This article presents a new and powerful freeware software called MotorAnalysis-PM and discusses its application in electromagnetic design and analysis of permanent magnet (PM) motors for the electric vehicle (EV) industry. This new PM motor software utilizes both finite element (FE) and analytical methods to speed up the analysis and design process of PM motors significantly. The analysis and design methodology using MotorAnalysis-PM is presented and discussed for a 50 kW PM motor utilized in a commercial EV. To validate the accuracy of the software, the numerical results obtained from the PM motor design and analysis tool are compared with experimental results. The numerical and experimental results validate the flexibility of this software in achieving accurate motor design with short design times which is of great interest to EV and PM motor manufacturers.
“…In order to analyze oil cooled motors, the thermal conductivity of the air gap assumed as a constant value, one equivalent air gap resistance can be calculated considering the air gap equal to a cylinder. Reference [Hsu et al, 2005] shows that the thermal conductivity of Toyota Prius traction motor is 10 W/m-°C based on the oil and air convective mixture. In this case, the simpler expression for deriving the air gap thermal resistance is given as follows: where r magnet the outer magnet radius; r is the inner stator radius; k ag thermal conductivity of the air gap.…”
Section: The Thermal Resistance Of Air Gap -R Agmentioning
“…Additional information about the capabilities and properties of the 2004 Prius are presented in a separate ORNL report [2].…”
Section: Hybrid Electric Drive System Descriptionmentioning
confidence: 99%
“…Additional details about the design and manufacture of the motor are contained in a report that was recently published by ORNL [6]. Supplementary information about locked rotor torque and current performance, which is addressed in Section 3.2.1, is contained in another ORNL report [2].…”
Section: Motormentioning
confidence: 99%
“…A series of locked rotor tests [2] were performed in 2004 and 2005 to determine the general operating capabilities of the traction motor. The 2005 test used a new mechanical-gear mechanism capable of precisely positioning and locking the rotor based on readings from the absolute position sensor in the Prius.…”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.