Clinical benefit of ALK tyrosine kinase inhibitors (ALK‐TKIs) in ALK‐rearranged lung cancer has been limited by the inevitable development of acquired resistance, and bypass‐molecular resistance mechanisms remain poorly understood. We investigated a novel therapeutic target through screening FDA‐approved drugs in ALK‐TKI‐resistant models. Cerivastatin, the rate‐limiting enzyme inhibitor of the mevalonate pathway, showed anti‐cancer activity against ALK‐TKI resistance in vitro/in vivo, accompanied by cytoplasmic retention and subsequent inactivation of transcriptional co‐regulator YAP. The marked induction of YAP‐targeted oncogenes (EGFR, AXL, CYR61, and TGFβR2) in resistant cells was abolished by cerivastatin. YAP silencing suppressed tumor growth in resistant cells, patient‐derived xenografts, and EML4‐ALK transgenic mice, whereas YAP overexpression decreased the responsiveness of parental cells to ALK inhibitor. In matched patient samples before/after ALK inhibitor treatment, nuclear accumulation of YAP was mainly detected in post‐treatment samples. High expression of YAP in pretreatment samples was correlated with poor response to ALK‐TKIs. Our findings highlight a crucial role of YAP in ALK‐TKI resistance and provide a rationale for targeting YAP as a potential treatment option for ALK‐rearranged patients with acquired resistance to ALK inhibitors.