“…Machine and statistical learning algorithms (see, e.g., Alpaydin, 2014; Hastie et al., 2009; James et al., 2013; Witten et al., 2017) can be reliably automated and applied at scale (Papacharalampous et al., 2019). Therefore, they are befitting and increasingly adopted for solving urban water demand forecasting problems (see, e.g., Duerr et al., 2018; Herrera et al., 2010; Herrera et al., 2011; Lee & Derrible, 2020; Nunes Carvalho et al., 2021; Quilty & Adamowski, 2018; Quilty et al., 2016; Smolak et al., 2020; Xenochristou & Kapelan, 2020; Xenochristou et al., 2020; Xenochristou et al., 2021), and several other water informatics problems (see, e.g., Althoff, Dias, et al., 2020; Althoff, Filgueiras, & Rodrigues, 2020; Althoff, Bazame, & Garcia, 2021; Markonis & Strnad, 2020; Rahman, Hosono, Kisi, et al., 2020; Rahman, Hosono, Quilty, et al., 2020; Sahoo et al., 2019; Scheuer et al., 2021; Tyralis, Papacharalampous, & Langousis, 2021; Tyralis & Papacharalampous, 2017; Xu, Chen, Zhang, & Chen, 2020; Xu, Chen, Moradkhani, et al., 2020).…”