Escherichia coli senses and signals anoxic or low redox conditions in its growth environment by the Arc two-component system. Under anaerobic conditions, the ArcB sensor kinase autophosphorylates and transphosphorylates ArcA, a global transcriptional regulator that controls the expression of numerous operons involved in respiratory or fermentative metabolism. Under aerobic conditions, the kinase activity of ArcB is inhibited by the quinone electron carriers that act as direct negative signals. Here, we show that the molecular mechanism of kinase silencing involves the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation, a reaction in which the quinones provide the source of oxidative power. Thus, a pivotal link in the Arc signal transduction pathway connecting the redox state of the quinone pool to the transcriptional apparatus is elucidated.T wo-component signal transduction systems are widespread in prokaryotes and play extensive roles in adaptation to environmental changes (1, 2). The Arc (anoxic redox control) two-component system is an important element in the complex transcriptional regulatory network that allows facultative anaerobic bacteria, such as Escherichia coli, to sense various respiratory growth conditions and adapt their gene expression accordingly (3). This system comprises the cytoplasmic response regulator ArcA and the transmembrane sensor kinase ArcB (4, 5). ArcA is a typical response regulator possessing an N-terminal receiver domain with a conserved Asp residue at position 54 and a C-terminal helix-turn-helix DNA binding domain. In contrast, ArcB is an unorthodox sensor kinase as manifested by its unusually elaborate architecture. As a sensor, ArcB is deviant because in contrast to typical sensor kinases that have a substantial periplasmic domain for environmental sensing, ArcB has a very short periplasmic sequence of only 16 amino acid residues delimited by two canonical transmembrane segments. Interestingly, the ArcB transmembrane domain (amino acids 22-77) does not directly participate in signal sensing but rather serves as an anchor that keeps the protein close to the source of the signal (6). As a kinase, ArcB is atypical because it contains three catalytic domains: an N-terminal transmitter domain with a conserved His-292 residue, a central receiver domain with a conserved Asp-576 residue, and a C-terminal phosphotransfer domain with a conserved His-717 residue (5, 7). Moreover, in the linker that is the region connecting the catalytic domains with the transmembrane domain, there are a putative leucine zipper (8) and a Per-Arnt-Sim (PAS) domain (9).Under reducing conditions, ArcB undergoes ATP-dependent autophosphorylation, a process shown to be enhanced by certain anaerobic metabolites such as D-lactate, acetate, and pyruvate (10, 11), and transphosphorylates ArcA via a His-292 3 Asp-576 3 His-717 3 Asp-54 phosphorelay (12, 13). Phosphorylated ArcA (ArcA-P), in turn, represses the expression of many operons invo...