Measuring the friction and wear characteristics of a tribological contact is essential to gaining a detailed understanding of its performance and predicted life. Wear rate and friction coefficient measurements are obtained from instrumented benchtop tribometers designed to replicate specific tribological contacts. Due to the difficulty of measuring wear in situ, measurements are typically made before and after an experiment. The wear rate must be assumed to be linear for it to be used to predict product life, however this is assumption can hide changes occurring during an experiment which indicate wear transitions. This paper details the design and validation of an in situ stylus profilometer for a reciprocating sliding tribometer to provide an insight into the wear transitions occurring during dry sliding of 52100 bearing steel against graphitic flake cast iron. The profilometer's performance was validated using ground roughness standards and the accuracy found to be approximately 110nm. Incubation, run-in and steady state wear regimes were identified by the profilometer and corroborated with friction coefficient data, providing an enhanced understanding of the tribological contact behaviour.