When hybridization results in reduced fitness, natural selection is expected to favor the evolution of traits that minimize the likelihood of hybridizing in the first place. This process, termed reinforcement (or, more generally, reproductive character displacement), thereby contributes to the evolution of enhanced reproductive isolation between hybridizing groups. By enhancing reproductive isolation in this way, reinforcement plays an important role in the final stages of speciation. However, reinforcement can also contribute to the early stages of speciation. Specifically, because selection to avoid hybridization occurs only in sympatric populations, the unfolding of reinforcement can lead to the evolution of traits in sympatric populations that reduce reproduction between conspecifics in sympatry versus those in allopatry. Thus, reinforcement between species can lead to reproductive isolation—and possibly speciation—between populations in sympatry versus those in allopatry or among different sympatric populations. Here, I describe how this process can occur, the conditions under which it is most likely to occur, and the empirical data needed to evaluate the hypothesis that reinforcement can initiate speciation.