Global male infertility correlated to the rise of endocrine-disrupting chemicals, including insecticides, has grown into a pressing problem. Thiacloprid is one of the most commonly used neonicotinoids that accounts for more than 25% of the global pesticide industry. However, its impact on the reproductive system and male fertility has not been fully elucidated. The object of this study was to explore the adverse effects of thiacloprid on male Wistar rats’ reproductive system. Thirty healthy male rats were separated into one of three groups: control group, and two groups that were orally administered with low (22.5 mg/kg) and high dose (62.1 mg/kg) of thiacloprid for 56 days. Thiacloprid significantly (p<0.05) reduced body weight and relative testicular weight, as well as sperm quality (count, motility, viability, and morphology), in a dose-dependent manner. THIA-treated groups revealed a large effect (d > 0.8) on semen quality with Cohen’s d of (6.57, 8.82), (20.14, 23.54), and (2.81, 9.10) for count, motility, and viability respectively. Meanwhile, the serum testosterone level dropped while the levels of luteinizing and follicle-stimulating hormones increased. 17ꞵ-hydroxy steroid dehydrogenase and 3ꞵ-hydroxy steroid dehydrogenase levels were significantly decreased in a dose-dependent manner. The activity of the tested antioxidant enzymes catalase (CAT), glutathione reduced (GSH), and superoxide dismutase (SOD) exhibited a considerable decrease compared to the control group with a significant elevation in the lipid peroxidation activity as indicated by malondialdehyde (MDA) level. The testicular histology revealed degenerative changes in spermatogenic cells and interstitial tissue. Comet assay revealed DNA fragmentation in treated groups’ testicular tissue. Thiacloprid exposure interferes with reproductive function and impairs male Wistar rat fertility. Such harmful consequences may also develop in humans frequently exposed to thiacloprid.