Fleischman A, Vecchio C, Sunny Y, Bawiec CR, Lewin PA, Kresh JY, Kohut AR. Ultrasound-induced modulation of cardiac rhythm in neonatal rat ventricular cardiomyocytes. J Appl Physiol 118: 1423-1428, 2015. First published April 9, 2015 doi:10.1152/japplphysiol.00980.2014.-Isolated neonatal rat ventricular cardiomyocytes were used to study the influence of ultrasound on the chronotropic response in a tissue culture model. The beat frequency of the cells, varying from 40 to 90 beats/min, was measured based upon the translocation of the nuclear membrane captured by a high-speed camera. Ultrasound pulses (frequency Ï 2.5 MHz) were delivered at 300-ms intervals [3.33 Hz pulse repetition frequency (PRF)], in turn corresponding to 200 pulses/min. The intensity of acoustic energy and pulse duration were made variable, 0.02-0.87 W/cm 2 and 1-5 ms, respectively. In 57 of 99 trials, there was a noted average increase in beat frequency of 25% with 8-s exposures to ultrasonic pulses. Applied ultrasound energy with a spatial peak time average acoustic intensity (Ispta) of 0.02 W/cm 2 and pulse duration of 1 ms effectively increased the contraction rate of cardiomyocytes (P Ïœ 0.05). Of the acoustic power tested, the lowest level of acoustic intensity and shortest pulse duration proved most effective at increasing the electrophysiological responsiveness and beat frequency of cardiomyocytes. Determining the optimal conditions for delivery of ultrasound will be essential to developing new models for understanding mechanoelectrical coupling (MEC) and understanding novel nonelectrical pacing modalities for clinical applications.