MyoD1 and myogenin are muscle-specific proteins which can convert non-myogenic cells in culture to differentiated muscle fibres, implicating them in myogenic determination. The pattern of expression of MyoD1 and myogenin during the early stages of muscle formation in the mouse embryo in vivo and in limb-bud explants cultured in vitro, indicates that they may have different functions in different types of muscle during development.
Haemophilus influenzae is a host adapted human mucosal pathogen involved in a variety of acute and chronic respiratory tract infections, including chronic obstructive pulmonary disease and asthma, all of which rely on its ability to efficiently establish continuing interactions with the host. Here we report the characterization of a novel molybdenum enzyme, TorZ/MtsZ that supports interactions of H. influenzae with host cells during growth in oxygen-limited environments. Strains lacking TorZ/MtsZ showed a reduced ability to survive in contact with epithelial cells as shown by immunofluorescence microscopy and adherence/invasion assays. This included a reduction in the ability of the strain to invade human epithelial cells, a trait that could be linked to the persistence of H. influenzae. The observation that in a murine model of H. influenzae infection, strains lacking TorZ/MtsZ were almost undetectable after 72 h of infection, while ∼3.6 × 103 CFU/mL of the wild type strain were measured under the same conditions is consistent with this view. To understand how TorZ/MtsZ mediates this effect we purified and characterized the enzyme, and were able to show that it is an S- and N-oxide reductase with a stereospecificity for S-sulfoxides. The enzyme converts two physiologically relevant sulfoxides, biotin sulfoxide and methionine sulfoxide (MetSO), with the kinetic parameters suggesting that MetSO is the natural substrate of this enzyme. TorZ/MtsZ was unable to repair sulfoxides in oxidized Calmodulin, suggesting that a role in cell metabolism/energy generation and not protein repair is the key function of this enzyme. Phylogenetic analyses showed that H. influenzae TorZ/MtsZ is only distantly related to the Escherichia coli TorZ TMAO reductase, but instead is a representative of a new, previously uncharacterized clade of molybdenum enzyme that is widely distributed within the Pasteurellaceae family of pathogenic bacteria. It is likely that MtsZ/TorZ has a similar role in supporting host/pathogen interactions in other members of the Pasteurellaceae, which includes both human and animal pathogens.
Autophagy is a vesicular trafficking pathway that regulates the degradation of aggregated proteins and damaged organelles. Initiation of autophagy requires several multiprotein signaling complexes, such as the ULK1 kinase complex and the Vps34 lipid kinase complex, which generates phosphatidylinositol 3-phosphate [PtdIns(3)P] on the forming autophagosomal membrane. Alterations in autophagy have been reported for various diseases, including myopathies. Here we show that skeletal muscle autophagy is compromised in mice deficient in the X-linked myotubular myopathy (XLMTM)-associated PtdIns(3)P phosphatase myotubularin (MTM1). Mtm1-deficient muscle displays several cellular abnormalities, including a profound increase in ubiquitin aggregates and abnormal mitochondria. Further, we show that Mtm1 deficiency is accompanied by activation of mTORC1 signaling, which persists even following starvation. In vivo pharmacological inhibition of mTOR is sufficient to normalize aberrant autophagy and improve muscle phenotypes in Mtm1 null mice. These results suggest that aberrant mTORC1 signaling and impaired autophagy are consequences of the loss of Mtm1 and may play a primary role in disease pathogenesis.T he autophagy-lysosomal pathway regulates the degradation of bulk cytosol, protein aggregates, and mitochondria. Nutrient limitation represents one of the major ways in which autophagy is activated, and in this context, the recycling of cellular components provides the cell with a source of ATP and amino acids to maintain normal homeostatic processes (1). Tissue-specific deletion of essential autophagy genes (ATG) such as Atg5 or Atg7 has revealed that autophagy plays a cytoprotective role by degrading potentially toxic aggregated proteins and damaged organelles (2-9). The regulation of autophagy is complex but can be categorized into three major phases: initiation, maturation and, degradation (10). The ULK1-Atg13-FIP200 complex plays an essential role in certain nucleating events during initiation (11). This complex is regulated by mTOR (12-14), which itself assembles into two multiprotein complexes termed mTORC1 and mTORC2 (15). The two complexes can be distinguished on the basis of unique components, namely, Raptor and Rictor, which associate with mTORC1 and mTORC2, respectively (16-18). mTORC1 suppresses autophagy and in parallel promotes cell growth via the activation of eIF4E and ribosomal S6 protein kinase (S6K) (15). Inhibition of mTORC1 by nutrient deprivation or pharmacological inhibitors such as rapamycin results in the activation of ULK1 and autophagy (11). In addition to ULK1, the class III phosphatidylinositol 3-kinase Vps34 is required for the formation of autophagosomes during pathway initiation. It is believed that following activation of the ULK1 complex, ATG14L recruits Vps34 to the surface of the endoplasmic reticulum, where it catalyzes the production of phosphatidylinositol 3-phosphate [PtdIns(3)P] (19-21). The exact role of PtdIns(3)P in autophagy is unclear, but studies suggest that PtdIns(3)P recruits...
The elastic modulus of bioengineered materials has a strong influence on the phenotype of many cells including cardiomyocytes. On polyacrylamide (PAA) gels that are laminated with ligands for integrins, cardiac myocytes develop well organized sarcomeres only when cultured on substrates with elastic moduli in the range of 10 kPa to 30 kPa, near those of the healthy tissue. On stiffer substrates (>60 kPa) approximating the damaged heart, myocytes form stress fiber-like filament bundles but lack organized sarcomeres or an elongated shape. On soft (<1 kPa) PAA gels myocytes exhibit disorganized actin networks and sarcomeres. However, when the polyacrylamide matrix is replaced by hyaluronic acid (HA) as the gel network to which integrin ligands are attached, robust development of functional neonatal rat ventricular myocytes occurs on gels with elastic moduli of 200 Pa, a stiffness far below that of the neonatal heart and on which myocytes would be amorphous and dysfunctional when cultured on polyacrylamide-based gels. The HA matrix by itself is not adhesive for myocytes, and the myocyte phenotype depends on the type of integrin ligand that is incorporated within the HA gel, with fibronectin, gelatin, or fibrinogen being more effective than collagen 1. These results show that HA alters the integrin-dependent stiffness response of cells in vitro and suggests that expression of HA within the extracellular matrix (ECM) in vivo might similarly alter the response of cells that bind the ECM through integrins. The integration of HA with integrin-specific ECM signaling proteins provides a rationale for engineering a new class of soft hybrid hydrogels that can be used in therapeutic strategies to reverse the remodeling of the injured myocardium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.