D-(؊)-3-Hydroxybutyrate (DHB), the immediate depolymerization product of the intracellular carbon store poly-3-hydroxybutyrate (PHB), is oxidized by the enzyme 3-hydroxybutyrate dehydrogenase to acetoacetate (AA) in the PHB degradation pathway. Externally supplied DHB can serve as a sole source of carbon and energy to support the growth of Sinorhizobium meliloti. In contrast, wild-type S. meliloti is not able to utilize the L-(؉) isomer of 3-hydroxybutyrate (LHB) as a sole source of carbon and energy. In this study, we show that overexpression of the S. meliloti acsA2 gene, encoding acetoacetyl coenzyme A (acetoacetyl-CoA) synthetase, confers LHB utilization ability, and this is accompanied by novel LHB-CoA synthetase activity. Kinetics studies with the purified AcsA2 protein confirmed its ability to utilize both AA and LHB as substrates and showed that the affinity of the enzyme for LHB was clearly lower than that for AA. These results thus provide direct evidence for the LHB-CoA synthetase activity of the AcsA2 protein and demonstrate that the LHB utilization pathway in S. meliloti is AcsA2 dependent.Poly-3-hydroxybutyrate (PHB), a bacterial intracellular reserve of carbon and reducing energy, accumulates when a nutrient other than carbon is limiting for growth, as reviewed by Madison and Huisman (18). Based on biochemical evidence, the metabolism of PHB has been proposed to be a cyclical process, comprising the pathways for synthesis and degradation of PHB. Synthesis of PHB occurs when excess carbon, in the form of acetyl coenzyme A (acetyl-CoA), is condensed via a ketothiolase (EC 2.3