Plants display an amazing developmental plasticity which compensates for a sessile lifestyle and inability to move away from unfavorable conditions as in the case of animals. Many aspects of this adaptability inflict changing of cell fate, de novo organ formation, and rearrangement of the plant body plan. Coordination of those processes is facilitated by the hormone auxin, which through its directional flow and local accumulation patterns provides the spatial information linking cellular and developmental modifications. This tight control of auxin distribution is in a major extent facilitated by the activity of PIN-FORMED (PIN) auxin transporters mediating export of auxin from cells. Members of the PIN protein family can display polar localization at the plasma membrane which enables the directional auxin transit through cells. The local levels of PINs in the membrane are dynamically, controlled by subcellular vesicular trafficking events encompassing secretion, recycling, degradation, and most prominently endocytosis. This well-characterized process also provides entry points for different signals that engage the endocytic machinery forging PINs into different downstream trafficking pathways, in accordance with ontogenetic programs and environmental stimuli, thus facilitating plant development.