Change captioning tasks aim to detect changes in image pairs observed before and after a scene change and generate a natural language description of the changes. Existing change captioning studies have mainly focused on scenes with a single change. However, detecting and describing multiple changed parts in image pairs is essential for enhancing adaptability to complex scenarios. We solve the above issues from three aspects: (i) We propose a CG-based multi-change captioning dataset; (ii) We benchmark existing state-of-the-art methods of single change captioning on multi-change captioning; (iii) We further propose Multi-Change Captioning transformers (MCCFormers) that identify change regions by densely correlating different regions in image pairs and dynamically determines the related change regions with words in sentences. The proposed method obtained the highest scores on four conventional change captioning evaluation metrics for multichange captioning. In addition, existing methods generate a single attention map for multiple changes and lack the ability to distinguish change regions. In contrast, our proposed method can separate attention maps for each change and performs well with respect to change localization. Moreover, the proposed framework outperformed the previous state-of-the-art methods on an existing change captioning benchmark, CLEVR-Change, by a large margin (+6.1 on BLEU-4 and +9.7 on CIDEr scores), indicating its general ability in change captioning tasks. Our code and dataset will be publicly available through the project page 1 . Before Change captions After Caption 1: The large gray rubber sphere has disappeared. (delete) Caption 2: There is no longer a large cyan metal cube. (delete) Caption 3: The large brown metal sphere was moved from its original location. (move) Caption 4: The small yellow rubber cylinder was replaced by a small red rubber sphere. (replace)